Visualization-based communities discovering in commuting networks : a case study
نویسندگان
چکیده
Abstract. The division of a national territory is a mandatory process to analyse socio-economic dynamics. Commuting is then an important dimension to build such classification and weighted network analysis is adapted to study this phenomenon. We present in this paper a procedure to help users to identify hierarchical partitions of cities that capture commuters flows density. We enforce our method on a network which represents commuting in France (based on the 1999 national census). Our approach is based on a common technique improved by visual tools: highlight dense areas using a strength metric and extract clusters at different levels using the variation of a quality measure function.
منابع مشابه
Exploration of Researchers' Social Network for Discovering Communities
The research community plays a very important role in helping researchers undertake new research topics. The authors propose a community mining system that helps to find communities of researchers by using bibliography data. The basic concept of this system is to provide interactive visualization of communities both local and global communities. We implemented this concept using actual bibliogr...
متن کاملDesigning an Ontology for Knowledge Discovery in Iran’s Vaccine
Ontology is a requirement engineering product and the key to knowledge discovery. It includes the terminology to describe a set of facts, assumptions, and relations with which the detailed meanings of vocabularies among communities can be determined. This is a qualitative content analysis research. This study has made use of ontology for the first time to discover the knowledge of vaccine in Ir...
متن کاملMining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain
Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...
متن کاملOverlapping Community Detection in Social Networks Based on Stochastic Simulation
Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...
متن کاملGraphical models based hierarchical probabilistic community discovery in large-scale social networks
Real-world social networks, while disparate in nature, often comprise of a set of loose clusters (a.k.a. communities), in which members are better connected to each other than to the rest of the network. In addition, such communities are often hierarchical, reflecting the fact that some communities are composed of a few smaller, sub-communities. Discovering the complicated hierarchical communit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015